' From the book '2d game collision detection' ' line vs oriented rectangle collision Import mojo ' This is the collision class. ' Class collision ' Collision function ' Here the line vs oriented rectangle collision Function line_oriented_rectangle_collide:Bool( l:line, r:orientedrectangle) Local lr:rectangle lr = New rectangle( New vector2d(0,0), multiply_vector(r.halfextend,2)) Local l1:line = New line( New vector2d(0,0), New vector2d(0,0)) l1.base = subtract_vector(l.base,r.center) l1.base = rotate_vector(l1.base,-r.rotation) l1.base = add_vector(l1.base,r.halfextend) l1.direction = rotate_vector(l.direction,-r.rotation) Return line_rectangle_collide(l1,lr) End Function ' The rectangle vs Line Collision ' needed for line vs oriented rectangle collion Function line_rectangle_collide:Bool(l:line,r:rectangle) Local n:vector2d = rotate_vector_90(l.direction) Local dp1:Float,dp2:Float Local dp3:Float,dp4:Float Local c1:vector2d = r.origin Local c2:vector2d = add_vector(c1,r.size) Local c3:vector2d = New vector2d(c2.x,c1.y) Local c4:vector2d = New vector2d(c1.x,c2.y) c1 = subtract_vector(c1,l.base) c2 = subtract_vector(c2,l.base) c3 = subtract_vector(c3,l.base) c4 = subtract_vector(c4,l.base) dp1 = dot_product(n,c1) dp2 = dot_product(n,c2) dp3 = dot_product(n,c3) dp4 = dot_product(n,c4) Return (dp1 * dp2 <= 0) Or (dp2 * dp3 <= 0) Or (dp3 * dp4 <= 0) End Function ' ' helper functions ' Function dot_product:Float(a:vector2d,b:vector2d) Return a.x * b.x + a.y * b.y End Function Function rotate_vector_90:vector2d(v:vector2d) Local r:vector2d = New vector2d() r.x = -v.y r.y = v.x Return r End Function Function multiply_vector:vector2d(v:vector2d,scalar:Float) Local r:vector2d = New vector2d() r.x = v.x * scalar r.y = v.y * scalar Return r End Function ' Here is the function that rotates a vector. It returns the ' new rotated vector. ' Function rotate_vector:vector2d(v:vector2d,degrees:Float) Local r:vector2d = New vector2d() r.x = v.x * Cos(degrees) - v.y * Sin(degrees) r.y = v.x * Sin(degrees) + v.y * Cos(degrees) Return r End Function Function add_vector:vector2d(a:vector2d,b:vector2d) Local r:vector2d = New vector2d(0,0) r.x = a.x + b.x r.y = a.y + b.y Return r End Function Function subtract_vector:vector2d(a:vector2d,b:vector2d) Local r:vector2d = New vector2d() r.x = a.x - b.x r.y = a.y - b.y Return r End Function End Class Class vector2d ' x and y hold the position of the vector Field x:Int,y:Int Method New(x:Int,y:Int) Self.x = x Self.y = y End Method End Class Class rectangle ' origin is a vector that holds the x and y coordinates ' of the rectangle Field origin:vector2d ' size is a vector that holds the x(width) and ' y(height) of the rectangle Field size:vector2d Method New(origin:vector2d,size:vector2d) Self.origin = origin Self.size = size End Method Method draw() ' x1,y1,w,h are used to hold the rectangle ' location and size. Local x1:Int=origin.x Local y1:Int=origin.y Local w:Int=size.x Local h:Int=size.y DrawRect x1,y1,w,h End Method End Class Class line ' base is a vector which holds the origin ' of the line Field base:vector2d Field direction:vector2d Method New(base:vector2d,direction:vector2d) Self.base = base Self.direction = direction End Method Method draw() DrawLine base.x,base.y,direction.x,direction.y End Method End Class Class orientedrectangle Field center:vector2d Field halfextend:vector2d Field rotation:Float Method New(center:vector2d,halfextend:vector2d,rotation:Float) Self.center = center Self.halfextend = halfextend Self.rotation = rotation End Method Method draw() Local v1:vector2d,v2:vector2d,v3:vector2d,v4:vector2d 'topside v1 = New vector2d(-halfextend.x,-halfextend.y) v2 = New vector2d(halfextend.x,-halfextend.y) v1 = rotate_vector(v1,rotation) v2 = rotate_vector(v2,rotation) v1.x += center.x v1.y += center.y v2.x += center.x v2.y += center.y ' rightside v3 = New vector2d(halfextend.x,halfextend.y) v3 = rotate_vector(v3,rotation) v3.x += center.x v3.y += center.y ' bottom side v4 = New vector2d(-halfextend.x,halfextend.y) v4 = rotate_vector(v4,rotation) v4.x += center.x v4.y += center.y DrawLine v1.x,v1.y,v2.x,v2.y DrawLine v2.x,v2.y,v3.x,v3.y DrawLine v3.x,v3.y,v4.x,v4.y DrawLine v4.x,v4.y,v1.x,v1.y End Method Function rotate_vector:vector2d(v:vector2d,degrees:Float) Local r:vector2d = New vector2d() r.x = v.x * Cos(degrees) - v.y * Sin(degrees) r.y = v.x * Sin(degrees) + v.y * Cos(degrees) Return r End Function End Class ' col is the caller of the class collision. ' we use it to use the collision methods. Global col:collision = New collision Class MyGame Extends App Field angle:Float=0 Method OnCreate() SetUpdateRate(60) End Method Method OnUpdate() angle+=1 If angle > 360 Then angle=0 End Method Method OnRender() Cls 0,0,0 SetColor 255,255,255 'set up the line Local line1:line = New line( New vector2d(0,0), New vector2d(MouseX,MouseY)) 'set up the oriented rectangle (base, halfextend(size),angle) Local orect1:orientedrectangle orect1 = New orientedrectangle( New vector2d(320,200), New vector2d(100,50), angle) ' Here we test for collision If col.line_oriented_rectangle_collide(line1,orect1) DrawText "Line vs Oriented Rectangle Collision",0,0 Else DrawText "Line vs Oriented Rectangle NO Collision",0,0 End If ' Here we draw the line and oriented ' rectangle. line1.draw orect1.draw DrawText "Move the Mouse to test for Collision",DeviceWidth/2,0 End Method End Class Function Main() New MyGame() End Function
Artificial intelligence/templates/examples/rts/rpg/strategy ect. in MonkeyX/CerberusX language. You can download the free version of MonkeyX from itch.io or Cerberus-x.com The Flash applets will stop working in around 2020.
Sunday, March 5, 2017
Monkey-X - Collision - Line vs Oriented Rectangle - code example
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.